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Č Burdı́k1 and O Navrátil2
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Abstract
We give a method for construction of the solvable models. The method is based
on an idea of Turbiner’s to transform the Hamiltonian into a simple solvable
form. This method gives a possibility of constructing some matrix models.
We apply this method to the models of the Calogero type and obtain solvable
models of the three-particle system with the matrix 2 × 2 potential, which was
constructed by Polychronakos, and a new model with the matrix 3×3 potential.

PACS numbers: 02.30.Ik, 03.65.−w

1. Introduction

We deal with an algebraic method for the eigenvalue problem for the differential operator

H = ηik∂ik − U(x), (1)

where ηik is a constant symmetric matrix, U(x) is a symmetric matrix function of the variables
xi, i = 1, . . . , n, ∂i = ∂

∂xi .
We use an idea from some of Turbiner’s papers (see [1] and references therein) in which

the authors try to rewrite the differential operator

Ĥ = grs(y)∂rs + br(y)∂s + V (y) (2)

by the realization of the Lie algebra by differential operators of the first-order derivatives. If
the representation on space of the polynomials has invariant finite-dimensional subspaces, it
is possible to find the spectrum of this operator, or part of its spectrum, respectively, by pure
algebraic calculations. In the first case Turbiner calls the models exact solvable and in the
second case quasi-solvable.

To transform equation (1) to (2) the transformations yr = yr(xk) and ψ = ea(x)ψ̂ are used.
In this case, there are relations between functions grs(y), br(y), V (y) and yr(x), a(x), U(x).
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If the functions grs, br and V fulfil the same conditions, it is possible from these relations to
reconstruct the operator of type (1) from (2).

In the paper, we generalize this method to the case of a matrix potential. Some notes
about this generalization can be found, for instance, in paper [2]. Moreover, we do not use the
realizations of the Lie algebra. In general, we suppose the form of the differential operator
(2) for which the invariant finite-dimensional space of polynomials is evident. We also apply
the derived general relations to the case of systems connected with the three-particle Calogero
systems [3].

2. The general construction

Let us consider the differential operator (1), where U(x) is a real symmetric matrix function
of type N ×N and ψ(x) is an N-component vector wavefunction. First, we introduce the new
‘wavefunction’ ψ̂ by the relation ψ(x) = G(x)ψ̂(x), where G(x) is a regular matrix function
of the variables xk, k = 1, 2, . . . , n. The differential operator H transforms by the relation
G−1HGψ̂ = Ĥψ̂ , where

Ĥ = ηik∂ik + 2ηikXi∂k + ηikXi,k + ηikXkXi − Û (3)

and

∂iG = GXi , (4)

with Xi,k = ∂kXi and Û = G−1UG.
By derivation of equation (4) we obtain for the functions Xi the compatibility condition

∂k(Xi ) − ∂i(Xk) = XiXk − XkXi = [Xi , Xk]. (5)

Now we introduce new coordinates yr = yr(xi), r = 1, 2, . . . , n, where the functions
yr(xi) define smooth regular mapping and denote

qr
i = ∂yr

∂xi
and pi

r = ∂xi

∂yr
.

With the use of the relations qr
i p

i
s = qi

sp
r
i = δr

s we can rewrite (3) in the coordinates yr as

Ĥ = grs∂rs +
(
2grsYs − gst�r

st

)
∂r + grs

(
Yr,s + YsYr − �t

rsYt

) − Û, (6)

where ∂r denotes derivation according to the variable yr, grs = ηikqr
i q

s
k is the metric tensor,

�r
st = −pi

sp
k
t q

r
ik is the corresponding connection, Ys = pi

sXi and Yr,s = ∂sYr . Thus, after
these transformations we obtain the operator Ĥ in the form

Ĥ = grs(y)∂rs + 2br (y)∂r + V(y), (7)

where

br = grsYs − 1
2gst�r

st , (8)

V = grs
(
Yr,s + YsYr − �t

rsYt

) − Û. (9)

If the functions grs(y), br (y) and V(y) have a special form, invariant finite-dimensional
subspaces of functions for the differential operator (7) are evident. In this case, it is possible
to find any eigenvalues and eigenfunctions of the operator Ĥ and, consequently, the operator
H. For example, if the functions grs(y) are quadratic polynomials in variables yr, br (y) are
matrix linear functions, and V is a constant matrix, the set of polynomials of order less than
or equal to M is for any M invariant subspace. But there are other cases when the invariant
subspace of the operator (7) is evident.
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Now, we deal with necessary conditions which have to fulfil the functions grs, br and V
to be possible to obtain (7) from (1) by the above-mentioned process.

First, a transformation of the variables xk = xk(yr) has to exist, for which

grspi
rp

k
s = ηik. (10)

It is very well known that the conditions for integrability of this system of differential equations
are

Rk
rst = ∂t�

k
rs − ∂s�

k
rt + �i

rs�
k
it − �i

rt�
k
is = 0,

where

�r
st = grk�st,k �st,k = 1

2 (−∂kgst + ∂sgtk + ∂tgsk),

and grs is the inverse matrix to grs , i.e. grsgst = δr
t .

According to (8),

Yr = br + 1
2�r, (11)

where br = grsbs and �r = gst�st,r , hold. Moreover, from the definition of the matrix
function Yr we obtain

∂G
∂yr

= pk
r

∂G
∂xk

= pk
r GXk = GYr .

Therefore, the matrix functions Yr are solutions of the system of differential equations

∂rG(y) = G(y)Yr .

The integrability conditions of this system follow from the equations ∂s(∂rG) = ∂r(∂sG),
namely, they are

∂sYr − ∂rYs = YrYs − YsYr = [Yr , Ys]. (12)

If we write br = b̂r + Tr , where Tr = 1
N

Tr br , system (12) is equivalent to the equations

∂s

(
Tr + 1

2�r

) − ∂r

(
Ts + 1

2�s

) = 0 (13)

∂s b̂r − ∂r b̂s = [̂br , b̂s]. (14)

Equations (13) indicate that there is a function F(y) for which

Tr(y) + 1
2�r(y) = ∂rF (y) = F,r . (15)

If we define the matrix function Ĝ by the relation

G = eF Ĝ,

we obtain for this matrix function the linear homogeneous system of the differential equations

∂rĜ = Ĝ b̂r . (16)

Equation (9) gives

Û = ∂r b̂r + grs b̂r b̂s + �s
rs b̂

r + 2̂brF,r + grs(F,rs + F,rF,s − �sF,r ) − V (17)

and the function U in (1) is given by the relation

U = GÛG−1 = ĜÛĜ−1. (18)

This matrix function could be symmetric. This is an additional condition to the functions b̂r and
V. The necessary condition for this assumption can be formulated without knowledge of the
function Ĝ. If we denote eik by the matrices with the components (eik)rs = δirδks , it is possible
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to formulate the condition for the symmetry matrix U by the equation Tr(U(eik − eki)) = 0,
which holds for any i, k = 1, 2, . . . , N . Therefore, for any i and k the relation

Tr(U(eik − eki)) = Tr(ĜÛĜ−1(eik − eki)) = Tr(ÛĜ−1(eik − eki)Ĝ) = 0

holds. If we denote XT
ik = Ĝ−1(eik − eki)Ĝ, these equations can be read as

Tr
(
ÛXT

ik

) = 0 for any i, k. (19)

Let us denote by V the set of matrix functions, for which the relation (19) holds. It is evident
that if M ∈ V then f (y)M ∈ V for any function f (y). Moreover, if M ∈ V , we obtain by
derivation of the equation Tr(MXik) = 0 with respect to variable yr , according to (16), the
relation

DrM = ∂rM + [̂br , M] ∈ V.

It is easy to see that for any M ∈ V and any smooth function f (y) is

Dr(f (y)M) = M∂rf (y) + f (y)DrM ∈ V.

This V is linear space with the coefficient from the space of the smooth functions. By definition
and Jacobi identity it is easy to see that

Ds(DrM) = Dr(DsM) = DrsM.

Since the identity matrices I and Û are elements of V , the matrices DrÛ,DrsÛ,Drst Û, . . . are
elements of space V , too. But in the space V there can be only N(N+1)

2 linearly independent
functions. Therefore, for the potential U to be symmetric, a large number of matrix functions
has to be linearly dependent. From this we obtain additional conditions for the matrices b̂r

and V.

3. Three-particle models of the Calogero type

In this section we deal with the Hamiltonian operator

H = − 1
2 (∂11 + ∂22 + ∂33) + U(x1 − x2, x3 − x2), (20)

where x1 > x2 > x3 and U is a symmetric matrix function of the type N × N . It is seen
from the form of the potential U that it is convenient to introduce the relative coordinate by
the relations

X = x1 + x2 + x3 x1 = y1 +
1

3
X

y1 = x1 − 1

3
X = 2x1 − x2 − x3

3
x2 = 1

3
X − y1 − y2

y2 = x3 − 1

3
X = 2x3 − x1 − x2

3
x3 = y2 +

1

3
X.

After this substitution the operator (20) transforms to H = − 3
2∂XX + Hrel, where

Hrel = − 1
3 (∂11 − ∂12 + ∂22) + Urel(y1, y2),

and Urel(y1, y2) = U(2y1 + y2, y1 + 2y2). To apply the general method given in the previous
section, we study the operator

h = −2Hrel = 2
3 (∂11 − ∂12 + ∂22) − 2Urel. (21)

This is the operator of the type (1), where η11 = η22 = 2
3 , η12 = − 1

3 and U = 2Urel.
If we introduce the new variables by the relations

z1 = −y2
1 − y1y2 − y2

2 and z2 = −y1y2(y1 + y2),
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we obtain the metric tensor

g11 = −2z1, g12 = −3z2, g22 = 2
3z2

1, (22)

and

g11 = −2z2
1

4z3
1 + 27z2

2

, g12 = −9z2

4z3
1 + 27z2

2

, g22 = 6z1

4z3
1 + 27z2

2

. (23)

Since the functions grs are the quadratic polynomials in the variables z1, z2, we suppose that
b1 and b2 are linear polynomials and V is a constant matrix, i.e., we suppose

b1 = C1
0 + C1

1z1 + C1
2z2, b2 = C2

0 + C2
1z1 + C2

2z2, (24)

where Cr
s are constant matrices of the type N × N . Therefore

b1 = −2z2
1

(
C1

0 + z1C1
1 + z2C1

2

)
4z3

1 + 27z2
2

− 9z2
(
C2

0 + z1C2
1 + z2C2

2

)
4z3

1 + 27z2
2

b2 = −9z2
(
C1

0 + z1C1
1 + z2C1

2

)
4z3

1 + 27z2
2

+
6z1

(
C2

0 + z1C2
1 + z2C2

2

)
4z3

1 + 27z2
2

.

If we denote T r
s = 1

N
Tr Cr

s and Ĉr
s = Cr

s − T r
s , i.e. Tr Ĉr

s = 0, we have

T1 = −2z2
1

(
T 1

0 + z1T
1

1 + z2T
1

2

)
4z3

1 + 27z2
2

− 9z2
(
T 2

0 + z1T
2

1 + z2T
2

2

)
4z3

1 + 27z2
2

T2 = −9z2
(
T 1

0 + z1T
1

1 + z2T
1

2

)
4z3

1 + 27z2
2

+
6z1

(
T 2

0 + z1T
2

1 + z2T
2

2

)
4z3

1 + 27z2
2

b̂1 = −2z2
1

(
Ĉ1

0 + z1Ĉ1
1 + z2Ĉ1

2

)
4z3

1 + 27z2
2

− 9z2
(
Ĉ2

0 + z1Ĉ2
1 + z2Ĉ2

2

)
4z3

1 + 27z2
2

b̂2 = −9z2
(
Ĉ1

0 + z1Ĉ1
1 + z2Ĉ1

2

)
4z3

1 + 27z2
2

+
6z1

(
Ĉ2

0 + z1Ĉ2
1 + z2Ĉ2

2

)
4z3

1 + 27z2
2

.

The compatibility equation (13) gives

T 2
0 = T 2

1 = T 1
2 = 2T 2

2 − 3T 1
1 = 0 (25)

and equations (14) are[
Ĉ1

2, Ĉ2
2

] = 0,[
Ĉ1

1, Ĉ2
2

]
+

[
Ĉ1

2, Ĉ2
1

] = 0,[
Ĉ1

1, Ĉ2
1

] = 2
3 Ĉ1

2,
(26)[

Ĉ1
0, Ĉ2

2

]
+

[
Ĉ1

2, Ĉ2
0

] = 2Ĉ2
2 − 3Ĉ1

1,[
Ĉ1

0, Ĉ2
1

]
+

[
Ĉ1

1, Ĉ2
0

] = Ĉ2
1,[

Ĉ1
0, Ĉ2

0

] = −Ĉ2
0.

If we write conditions (25) in the form T 1
0 = γ, T 1

1 = 2ω and T 2
2 = 3ω, we obtain

T1 = −2γ z2
1

4z3
1 + 27z2

2

− ω, T2 = −9γ z2

4z3
1 + 27z2

2

and equations (15) are

∂1F = −2(γ + 1)z2
1

4z3
1 + 27z2

2

− ω, ∂2F = −9(γ + 1)z2

4z3
1 + 27z2

2

,
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from which it follows that

F(z1, z2) = −γ + 1

6
ln

∣∣4z3
1 + 27z2

2

∣∣ − ωz1.

Thus, we have

Û (1) = grs(F,rs + F,rF,s − �sF,r ) = −2γω − 2ω2z1 − 2(γ + 1)(γ + 4)z2
1

4z3
1 + 27z2

2

and part of the relative potential in the case br = 0 is

U
(1)
rel = C + ω2

(
y2

1 + y1y2 + y2
2

)
+

(γ + 1)(γ + 4)

9

(
1

(y1 − y2)2
+

1

(2y1 + y2)2
+

1

(y1 + 2y2)2

)
,

(27)

where C, γ and ω are any constants. In the case of the scalar model, i.e. N = 1, we obtain by
this method the known Calogero model [3].

For a general matrix potential we have to find a solution of the system (26). One of the
solutions of this system for general N is given by

Ĉ1
1 = Ĉ1

2 = Ĉ2
2 = 0

[
Ĉ1

0, Ĉ2
1

] = Ĉ2
1 and

[
Ĉ1

0, Ĉ2
0

] = −Ĉ2
0. (28)

In this case the functions b̂r are

b̂1 = Ĉ1
0 and b̂2 = Ĉ2

0 + Ĉ2
1z1

and the part of the potential Û which involves the matrices b̂r is

Û(m) = ∂r b̂r + grs b̂r b̂s + �s
rs b̂

r + 2̂brF,r − V

= −V̂ − 2ωĈ1
0 +

1

4z3
1 + 27z2

2

× [
6z3

1

(
Ĉ2

1

)2
+ 6z1

(
Ĉ2

0

)2

− 2z2
1

((
Ĉ1

0

)2
+ (2γ + 5)Ĉ1

0 − 3
(
Ĉ2

0Ĉ2
1 + Ĉ2

1Ĉ2
0

))
− 9z1z2

(
Ĉ1

0Ĉ2
1 + Ĉ2

1Ĉ1
0 + (2γ + 5)Ĉ2

1

)
− 9z2

(
Ĉ1

0Ĉ2
0 + Ĉ2

0Ĉ1
0 + (2γ + 5)Ĉ2

0

)]
. (29)

The system of partial differential equations (16) for the matrices Ĝ now has the form

∂Ĝ
∂z1

= − 2z2
1

4z3
1 + 27z2

2

ĜĈ1
0 − 9z2

4z3
1 + 27z2

2

ĜĈ2
0 − 9z1z2

4z3
1 + 27z2

2

ĜĈ2
1,

(30)
∂Ĝ
∂z2

= − 9z2

4z3
1 + 27z2

2

ĜĈ1
0 +

6z1

4z3
1 + 27z2

2

ĜĈ2
0 +

6z2
1

4z3
1 + 27z2

2

ĜĈ2
1,

or on the variables y1, y2

∂Ĝ
∂y1

= y2
2 − 2y1y2 − 2y2

1

D
ĜĈ1

0 +
3y2

D
ĜĈ2

0 − 3y2
(
y2

1 + y1y2 + y2
2

)
D

ĜĈ2
1

(31)
∂Ĝ
∂y2

= 2y2
2 + 2y1y2 − y2

1

D
ĜĈ1

0 − 3y1

D
ĜĈ2

0 +
3y1

(
y2

1 + y1y2 + y2
2

)
D

ĜĈ2
1,

where D = (y1 − y2)(2y1 + y2)(y1 + 2y2).
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3.1. Models with matrices of the type 2 × 2

For the matrix of the type 2 × 2 we can choose the solution of (28) as

Ĉ1
0 = 1

2

(
1 0
0 −1

)
= 1

2
e0, Ĉ2

1 =
(

0 ρ

0 0

)
= ρe12, Ĉ2

0 =
(

0 0
σ 0

)
= σe21,

where ρ and σ are real constants. The transformed matrix potential (29) in this case is

Û(2) = −ωe0 − (1 − 12ρσ)z2
1

2
(
4z3

1 + 27z2
2

) − 2γ + 5

4z3
1 + 27z2

2

(
z2

1e0 + 9σz2e21 + 9ρz1z2e12
) − V. (32)

To obtain a nontrivial case, the conditions for the symmetry of the potential Urel give

V + ωe0 = 0 and ρσ = − 2
3

and the corresponding transformed potential (32) is

Û(2) = − 9z2
1

2
(
4z3

1 + 27z2
2

) − 2γ + 5

4z3
1 + 27z2

2

(
z2

1 9ρz1z2

− 6
ρ
z2 −z2

1

)
.

When we write Ĝ = (
G11 G12

G21 G22

)
, the system of the partial differential equations (31) for

Ĝ is

∂Gk1

∂y1
=

(
y2

2 − 2y1y2 − 2y2
1

)
Gk1

2(y1 − y2)(2y1 + y2)(y1 + 2y2)
− 2y2Gk2

ρ(y1 − y2)(2y1 + y2)(y1 + 2y2)

∂Gk1

∂y2
=

(
2y2

2 + 2y1y2 − y2
1

)
Gk1

2(y1 − y2)(2y1 + y2)(y1 + 2y2)
+

2y1Gk2

ρ(y1 − y2)(2y1 + y2)(y1 + 2y2)

∂Gk2

∂y1
= − 3ρy2

(
y2

1 + y1y2 + y2
2

)
Gk1

(y1 − y2)(2y1 + y2)(y1 + 2y2)
+

(
2y2

1 + 2y1y2 − y2
2

)
Gk2

2(y1 − y2)(2y1 + y2)(y1 + 2y2)

∂Gk2

∂y2
= 3ρy1

(
y2

1 + y1y2 + y2
2

)
Gk1

(y1 − y2)(2y1 + y2)(y1 + 2y2)
+

(
y2

1 − 2y1y2 − 2y2
2

)
Gk2

2(y1 − y2)(2y1 + y2)(y1 + 2y2)
,

where k = 1, 2. The general regular solution of this system is

Ĝ = D−1/2C
(

2(2y1 + y2) 3ρy2(2y1 + y2)

2(y1 + 2y2) 3ρy1(y1 + 2y2)

)
,

where C is a constant regular matrix. This matrix has to be chosen so that the matrix

Ĝ

((
y2

1 + y1y2 + y2
2

)2
9ρy1y2

(
y1 + y2

)(
y2

1 + y1y1 + y2
2

)
6
ρ
y1y2

(
y1 + y2

) −(
y2

1 + y1y2 + y2
2

)2

)
Ĝ−1

= C
(

(y1 + y2)(y1 − y2)
3 y2(2y1 + y2)

3

y1(y1 + 2y2)
3 −(y1 + y2)(y1 − y2)

3

)
C−1

can be symmetric.
The solution of these equations is3

C =
(

3−1/4 3−1/4

−31/4 31/4

)
.

If we use this matrix C, we obtain the symmetric potential

U(2) = 1

2

(
1

(y1 − y2)2
+

1

(y1 + 2y2)2
+

1

(2y1 + y2)2

)
+

2γ + 5

3

(
U V

V −U

)
,

3 All other solutions of these equations have the form λRC, where λ is a real constant, R is any orthogonal matrix,
and C the matrix given in the main text.
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where

U = 1

2

(
2

(y1 − y2)2
− 1

(y1 + 2y2)2
− 1

(2y1 + y2)2

)
(33)

V =
√

3

2

(
1

(2y1 + y2)2
− 1

(y1 + 2y2)2

)
.

And finally, the potential of the model with the 2 × 2 matrix potential is

Urel = U
(1)
rel +

1

2
U(2) = C + ω2

(
y2

1 + y1y2 + y2
2

)
+

(2γ + 5)2

36

×
(

1

(y1 − y2)2
+

1

(y1 + 2y2)2
+

1

(2y1 + y2)2

)
+

2γ + 5

6

(
U V

V −U

)
.

The model with this matrix potential was found by a different method in [4].

3.2. Models with matrices of the type 3 × 3

The solution of equations (28) is

Ĉ1
0 =

1 0 0
0 0 0
0 0 −1

 , Ĉ2
0 =

 0 0 0
σ1 0 0
0 σ2 0

 , Ĉ2
1 =

0 ρ1 0
0 0 ρ2

0 0 0

 .

We suppose the relations ρ1σ1 = ρ2σ2 = − 4
3 . This assumption simplifies equations (31). In

this case, equation (29) has the form

Û(3) = −V − 2ωĈ1
0 − 12z2

1

4z3
1 + 27z2

2

− 2

4z3
1 + 27z2

2

Û11 Û12 Û13

Û21 Û22 Û23

Û31 Û32 Û33

 ,

where

Û11 = 2(γ + 2)z2
1, Û12 = 9(γ + 3)ρ1z1z2, Û13 = −3ρ1ρ2z

3
1,

Û21 = −12(γ + 3)

ρ1
z2, Û22 = 2z2

1, Û23 = 9(γ + 2)ρ2z1z2,

Û31 = − 16

3ρ1ρ2
z1, Û32 = −12(γ + 2)

ρ2
z2, Û33 = −2(γ + 3)z2

1.

To obtain the model, which can be symmetrized, we have to take V = −2ωĈ1
0 + 3

2ρ1ρ2e13.
One solution of (31) which give the symmetric potential is

Ĝ = 1

D

Ĝ11 Ĝ12 Ĝ13

Ĝ21 Ĝ22 Ĝ23

Ĝ31 Ĝ32 Ĝ33

 ,

where

D = (y1 − y2)(2y1 + y2)(2y2 + y1)

and

Ĝ11 = 12√
2γ + 5

(
3(y1 + y2)

2γ + 7y2
1 + 16y1y2 + 7y2

2

)
Ĝ12 = 18ρ1√

2γ + 5
(y1 + y2)

((
y2

1 + 4y1y2 + y2
2

)
γ + 3

(
y2

1 + 3y1y2 + y2
2

))
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Ĝ13 = 9ρ1ρ2

2
√

2γ + 5

((
y2

1 + 4y1y2 + y2
2

)2
γ + y4

1 + 20y3
1y2 + 48y2

1y2
2 + 20y1y

3
2 + y4

2

)
Ĝ21 = −12

√
3(γ + 3)(y1 − y2)(y1 + y2)

Ĝ22 = 6ρ1

√
3(γ + 3)(y1 − y2)

(
y2

1 + y1y2 + y2
2

)
Ĝ23 = 9

2
ρ1ρ2

√
3(γ + 3)(y1 − y2)(y1 + y2)

(
y2

1 + 4y1y2 + y2
2

)
Ĝ31 = 12

√
(γ + 2)(γ + 3)

2γ + 5
(y1 − y2)

2

Ĝ32 = −18ρ1

√
(γ + 2)(γ + 3)

2γ + 5
(y1 + y2)(y1 − y2)

2

Ĝ33 = 27

2
ρ1ρ2

√
(γ + 2)(γ + 3)

2γ + 5
(y1 + y2)

2(y1 − y2)
2.

With the use of this matrix we obtain the matrix part of the potential

U(3) = ĜÛ(3)Ĝ−1

= 4

3

(
1

(y1 − y2)2
+

1

(2y1 + y2)2
+

1

(y1 + 2y2)2

)
+

4

3

U11 U12 0
U12 U22 U23

0 U23 U33

 ,

where

U11 = (γ + 3)U, U22 = −U, U33 = −(γ + 2)U

U12 = (γ + 1)

√
γ + 3

2γ + 5
V, U23 = (γ + 4)

√
γ + 2

2γ + 5
V

and U,V are given by relations (33). Finally, the relative potential of this matrix model is

Urel = U
(1)
rel +

1

2
U(3) = C + ω2

(
y2

1 + y1y2 + y2
2

)
+

γ 2 + 5γ + 10

9

×
(

1

(y1 − y2)2
+

1

(2y1 + y2)2
+

1

(y1 + 2y2)2

)
+

2

3

U11 U12 0
U12 U22 U23

0 U23 U33

 .

4. Conclusions

In the paper, the method of construction of matrix solvable models is presented. The method
is illustrated on the A2 system of the Calogero type for three particles. For a comprehensive
review of these systems connected with different root systems see [5].

At this moment there exist many [6–11] matrix models. The method of construction is
connected with Dunkel operators [12] and using in the An case the representations of algebra A

M2
ij = 1, Mij Mj l = MilMij = Mj lMil , [Mij , Mlm] = 0,

where i, j, l, m are different indices. In our case, A2 i, j, l, m = 1, 2, 3.
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In the 2 × 2-matrix case, it is easy to show that the two-body Calogero interaction

γ
(
γ ± Mij

)
gives our model, if we take representation of A by operators

M12 = −1

2

(
1

√
3√

3 −1

)
, M13 =

(
1 0
0 −1

)
, M23 = −1

2

(
1 −√

3
−√

3 −1

)
.

A simple analysis shows that three-dimensional irreducible representations of algebra A do
not exist. In our case, the potential of the model is not reducible. Thus, our model is new.

The aim of the above examples was to demonstrate the method. In the following paper
we prepare the explicit calculation of the energy eigenvalues and eigenfunctions for our new
model starting from the solvability. For this calculation knowledge of the integral of motion
is not needed.

It is evident that the method is applicable to many general examples. The first substantial
generalization is to obtain the models for three particles with N × N matrices. The results
have already been obtained, and all these models are new in the sense mentioned above.

The second generalization respects the number of particles n, which is a really physically
interesting problem. The first step to solution of this problem was published in paper [13],
where the solvability of the n particle Calogero model and connection with the realization of
the algebra gl(n) was shown in the non-matrix case. This will fix the matrix tensor grs and
a change of variables. The explicit analysis of equation (14) can be performed, so the only
open problem is to find an effective method for the solution of equations (16). Anyway, as
we can see from our 3 × 3 matrix example for three particles, many of the models obtained
will be new, and there is good reason to make such cumbersome calculations for the n particle
systems as well.
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